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ABSTRACT
Cyber attacks become emerging threats to every information-oriented energy management sys-
tem. By violating the cyber systems, the hacker can disrupt the security and stability due to the
strong coupling between the cyber and physical facilities. In this paper, one type of cyber attacks
designated as the load altering attack is studied for the power system frequency control, and
corresponding defense strategies are proposed to improve the frequency control performance.
Considering the difficulty of the application of model-based controller into large-scale power
systems, a novel model-free defense framework is for the first time presented. Under this frame-
work, both active defense and passive defense strategies are designed. The former assumes that
the defender has the initiative to learn different attack scenarios. Adaptive defense strategies
are implemented using the online attack identification information and off-line trained strategy
pool. The latter assumes that the defender passively tolerates various attack scenarios via the
pre-trained off-line strategy. Both approaches prove to be effective through validation based on
the IEEE benchmark systems. The proposed defense framework and defense strategies can be
extended to other energy control systems to enhance their attack tolerance capability.

1. Introduction
The modern power systems are evolving into energy-cyber-physical systems, thanks to the ever-growing commu-

nication networks, advanced computation, and intelligence techniques [1]. Under this circumstance, the cyber security
of power systems has become an intensively discussed subject due to global security threats caused by the rampant
terrorist attacks. As one essential component in the energy sector, the secured control and operation of electrical power
systems, in particular, the fundamental power system frequency stability and control [2], is the key to the proper func-
tioning of energy-dependent activities. Therefore, defense strategies must be established to adapt to this new cyber
threat environment.

Defense against cyber attacks is an emerging topic for both the transmission and distribution systems [3]. The
focal point of existing studies lies in the detection [4] and isolation [5] of the attack signal; but few genuinely consider
a complete defense mechanism design, which is indispensable to the robustness of the control system under attack.
In the domain of system operation or planning, various attack objectives including the bad data detection (BDD)
performance [6], economy [7], load fulfillment [8] are considered in studying different attacks and corresponding
mitigation strategies. To elude BDD more economically and stealthily, research concerning the minimal number of
attacked meters or cooperative meter attack [9] emerges. Correspondingly, mitigation strategies including optimal
sensor placement [10] and measurement variation dynamics analysis [11] are studied. Cyber attacks on the economic
operation are usually modeled by bi-level programming: the upper level is associated with the hacker while the lower
level is for the economic operation. Under this frame, the attack goal is to construct an effective attack vector to increase
the operational cost [12]. Recently, decentralized programming is used to detect cyber attacks based on the convergence
criteria [13]. By isolating the unit when the confidence level of neighbor-observation is beyond the threshold, the
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convergence is still guaranteed under attack. Besides the economic damage, some hackers aim at unnecessary load
curtailment by compromising power flow measurements known as load redistribution (LR) attack [14]. To quantify
the influence of an LR attack on the long-term supply reliability, a holistic evaluation model is proposed in [15]. A
dynamic sequential-mining algorithm is used to extract vulnerable branch sequences under LR attack [16].

Since modern power grids are evolving into integrated cyber-physical systems, coordinated cyber-physical attacks
are thus investigated to analyze more sophisticated joint attack mechanisms. False data injection attack (FDIA) is
coordinated with physical attacks to mask the undetectable transmission line outages [17]. A coordinated false data
injection and load altering attack (LAA) is studied for various attack objectives [18]. A two-layer defense model
is proposed to optimize the deployment of defense resources using the zero-sum game algorithm [19]. A tri-level
optimization model is built to formulate the coordinated attack scenario where the hacker attacks the firewall at the
control centers and field devices simultaneously [20].

In this paper, the focal point is the defense strategy against LAA on the secondary frequency control or load
frequency control (LFC), which is the fundamental element of the energy management system [21]. By changing the
volume of unsecured loads, the operation and control systems are affected by LAAs. In respect to LFC, an LAA could
be achieved by manipulating unsecured load integrators (LIs). Unlike dispersed and small-scale residential loads,
LIs are integrated groups of residential consumers or large industrial consumers who are expected to participate in
demand-side response program. An LAA against unsecured LIs could significantly affect the frequency stability by
considering the volume of the load alteration [22].

There exist abundant research studies about cyber-physical attacks on frequency control systems, ranging from at-
tack strategy analysis [23] to defense strategy design [24]. The cyber attack impact of the automatic generation control
system is studied in [25]. Besides the ‘dumb’ attack behaviors, some researchers study how to design ‘intelligent’
schemes to optimize specific attack objectives [26]. Cyber attack detection in the frequency control system aims to
distinguish the normal frequency excursions with the compromised ones [27]. Recently, game techniques are used to
model the mutual interactions between the attacker and defender [28]. Cyber attack-tolerant power system frequency
controllers, regarded as the fundamental of the defense strategy in power system frequency control, have been inves-
tigated via model-based ones before. A novel simultaneous input and state estimation algorithm is used to detect and
compensate for FDIA attacks [29]. An unknown input observer is used to identify cyber attacks against LFC [30].
However, drawbacks of model-based controllers, such as requirements for special conditions and availability of com-
plete model information, may hinder their usage in the real-life application. The cyber attack-tolerant controller is
analogous to the resilient operation strategy [31]; both aim to achieve satisfactory control or operational performance
under unexpected abnormal disturbances. The difference lies in that the former belongs to the real-time control and
the latter is some time-ahead optimal energy management. It determines that resilient optimization methods in the
operation domain cannot be used for the control problem considered herein.

Distributed algorithms arewidely researched for power system operation due to its flexibility [32]. And a distributed
control system (DCS) is a promising technique for secure power system control [33]. With the aid of the consensus
protocol, the cyber attack can be detected if the consensus criteria are not satisfied. Specifically, the distributed security
observer is designed to analyze, detect and even mitigate attacks. Nevertheless, influences from different control loops
might deteriorate the overall performance, and the coordinationmechanism should be carefully devised. Also, the extra
cost of establishing the DCS center cannot be ignored. Therefore, a reliable and secure controller that can tolerate or
defend an LAA in the centralized control mode might be preferred for the transmission systems.

Inspired by fault-tolerant control (FTC) in the control theory branch [34], novel LFC schemes under LAA are
investigated by borrowing the idea of FTC and reforming it to better suit the needs herein. Model-free methods using
reinforcement learning (RL) are exploited to emancipate the controller from the complex model. RL has been widely
researched in energy management of various energy systems. A double Q-learning-based management strategy is
designed for the hybrid fuel cell and battery propulsion system to minimize the operational cost [35]. An RL-based
energy management strategy is designed for the hybrid construction machinery [36]. With the aid of deep neural
networks, deep Q-network (DQN) is further developed for RL-based energy management strategies, which can tackle
large scale learning tasks considering various operating conditions[37]. In this paper, both active defense (AD) and
passive defense (PD) strategies are designed via RL for complex detailed power system models, which are different
from the reduced-order simple plant model in theoretical control studies. As with an active FTC, an AD strategy
adapts to specific learned LAAs online by ‘actively’ adjusting the off-line established reconfiguration mechanism;
while different LAAs are pre-considered at the design stage of a PD strategy, and it ‘passively’ tolerates the unknown
LAAs in the online execution phase.
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The proposed strategies are completely decoupled from the power system model, which only serves as an ’environ-
ment’ where the external observation is used to learn the ‘optimal’ policy. Therefore, the practicality and performance
are significantly improved. Specifically, the main contributions include:

• A novel defense framework is for the first time proposed for the LFC system under LAA to attenuate its influence,
and the proposed defense framework can also be extended to the defense of other energy control systems.

• A novel model-free AD strategy is designed under the circumstance where the defender has the initiative to learn
different LAAs and uses the learned information for the attack attenuation. More specifically, a composite LAA
signal estimation and feedforward compensation-based defense strategy is presented.

• A novel model-free PD strategy is designed under the circumstance where the defender passively tolerates dif-
ferent LAAs by enhancing the system redundancies. More specifically, a PD strategy using the deep Q network
(DQN) technique is presented.

The remainder of the paper is as follows: Section 2 gives the basic backgrounds of model-free defense strategies.
Section 3 presents a detailed design procedure of a model-free AD-based LFC scheme. Section 4 discusses a model-
free PD-based LFC scheme. Numerical analyses are demonstrated in Section 5 and 6 to verify the validity. Eventually,
conclusions and future work are addressed in Section 7.

2. Preliminaries
First, we briefly address basics of amodel-free LFC defense strategy, including its working principle and superiority

(contribution). It lays the foundation for design procedures in Sections 3 and 4.
2.1. Load Altering Attack on Load Frequency Control

With the integration of information and communications technology (ICT), the demand side management (DSM)
is becoming an undeniably dominant force of flexible energy supplies. Though the capacity of power supplies is
enhanced by DSM programs, ICT-induced vulnerabilities from cyber spaces could disrupt the normal operation of
DSM programs and then the system security. Each participator depends on external signals, which are dispatched
from the DSM center, to adjust the energy demand. An LAA can be treated as an ill-intentioned energy demand
alteration [38]. Fig. 1 demonstrates the complete LAA process. The attacker first exploits the vulnerabilities of
communication systems to infiltrate the DSM center, then external signals sent to participators are controlled. The
attacker might also control external signals directly through invading communication channels between the DSM center
and participators. With fully-controlled external signals, the attacker can arbitrarily alter the consumption of large
industrial participators, leading to the abrupt power imbalance and system instability. From the perspective of power
flow analyses, the mathematical representation of an LAA is:

Pis + d = Ui
∑

j∈i
Uj

(

Gij cos �ij + Bij sin �ij
)

,∀i ∈e (1)

where i is the index of the unsecured load bus which connects with participators; e is the set of unsecured load;
j ∈i represents the neighboring bus of load bus i; U is the magnitude of the voltage; �ij represents the phase angledifference between load bus i and j; Gij and Bij represent the real and imaginary part of the admittance between load
bus i and j. d represents the load alteration in an LAA.

In the context of LFC, by combining the power equations of buses that all assume the form of (1) and the dynamic
model of units, the mathematical formulation of an LAA on LFC can be expressed as:

{

ẋ = f (x, u, d)
y = g (x) (2)

where x, y, and u represent the vector of power system states (unit angle, the voltage behind the transient reactance,
etc.), the output (system frequency), the control input (governor reference value of the LFC-participating units), re-
spectively. f and g are algebraic equations; d represents the vector of LAA signals.

Based on (2), the goal of LAA-tolerant controller design is to calculate u, such that the impact of LAAs on the
system frequency y can be alleviated, i.e., the system frequency can remain the small neighborhood of the equilibrium.
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Figure 1: Schematic diagram of load altering attack

2.2. Model-Free Load Frequency Control
By the algebraic derivation operator, the simple linear ultra-local model can replace the complex nonlinear system

model (2) [39]:
{

ẋ = f (x, u, d)
y = g (x)
nonlinear model

→ y(v) = �̂u + F̂
ultra−local model

(3)

where x, y, u, d, g and f have the same meaning as (2); v is the derivation order. The ‘ultra-local’ means that the
model is simplified as a weighted sum of an aggregated nonlinear disturbance term and the control input, independent
from the original ‘global’ model information; F̂ and �̂ are the estimation of lumped nonlinear terms and the control
input coefficient. Based on the ultra-local model, strategies which are suitable for low-complexity small-scale system,
including intelligent PID, fuzzy system control and sliding mode control, can be used to achieve model-free control
(MFC).

The MFC herein completely disintegrates with the model (either the original or the ultra-local one). The controller
rather learns from the system responses than the model dynamics for control command generation. The transformed
ultra-local model in (3) is not required, and the MFC is based upon the original untouched system, thus solving the
problem of obtaining v in (3) from complex high-order power systems.
2.3. Operating Principle of Active or Passive Defense-Based Load Frequency Control

In this section, the principle of AD and PD-based LFC, which guides Section 3 and 4, is presented for a better
understanding of the working principle.
2.3.1. Operating Principle of Active Defense-Based Load Frequency Control

Since an LAA can be equivalent to a fault in FTC, AD-based LFC is analogous to active fault-tolerant control
(AFTC), the aim of which is to achieve reliable performance through fault compensation. Technically, AFTC uses
the information of fault detection and diagnosis (FDD) to supervise the reconfiguration mechanism. In the context of
AD-based LFC under LAA, it means that the controller should collect the diagnosis information of LAAs (d in (2) )
before reconfiguring the original LFC controller. Inspired by the architecture of AFTC in [40], the schematic diagram
of AD-based LFC is shown in Fig. 2. As can be seen, this AD strategy actively exploits the system dynamics to
design the attack detection and diagnosis (ADD) module. It can thus obtain the quantitative information of d through
dynamic observer, parameter estimation, or parity techniques [41]; hence, it pertains to the active control. However,
model-based strategies are barely achievable for complex power system systems. Instead, model-free methods are used
Chunyu Chen et al.: Preprint submitted to Elsevier Page 4 of 20
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Figure 2: Schematic diagram of AD-based LFC under LAA

Gload

voltage 

sensor

AVC

excitation 

system

governor

p
rim

e
 

m
o

v
er

load frequency 

control system

load 

integrator

wm

policy

hacker

LAA

RL 

algorithm

update
observation reward

model-free PD-based LFC scheme

Figure 3: Schematic diagram of PD-based LFC under LAA

to achieve ADD herein; in this sense, the AD-based LFC can be regarded as a special type of model-free active FTC
scheme.
2.3.2. Operating Principle of Passive Defense-Based Load Frequency Control

Though the control goals are the same, unlike model-free AD-based LFC, PD-based LFC does not actively perform
ADD, and the controller reconfiguration mechanism is not required. Instead, it tolerates LAAs by using system redun-
dancies as passive FTC does. The controller teaches itself to search for the ‘best’ strategies to ‘minimize’ the LAA
impact, in the manner of pure data-driven exploration-and-exploitation tactics such as reinforcement learning (RL).
And the redundancies herein is interpreted as the generalization ability of the neural network-based policy agents,
which can produce good outputs for LAAs not encountered in the training process. Fig. 3 demonstrates the philosophy
of PD-based LFC.

Based on Section 2.1, the benefits of model-free defense strategies are as follows:
• Compared with the model-based controller, it does not require the dynamic model information to achieve attack

diagnosis, which would dramatically increase the cost and complexity of the controller. Therefore, it is appealing
to large-scale power system control.
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• Compared with MFC using ultra-local models, it does not require additional parameter information as the
reduced-order ultra-local model does. For example, precise v, F̂ , and �̂ in (3) are demanded in MFC based
on ultra-local models.

• The proposed MFC-based defense strategy uses the RL technique to obtain the ’optimal’ strategy. Once trained,
every control action is considered ’optimal’ concerning the maximization of the long-term expected return
(which quantifies the control performance). It automatically executes according to the current system states,
thus achieving the quick control velocity and stability simultaneously by avoiding the latency in closed-loop
feedback control.

3. Model-Free Active Defense-Based Load Frequency Control Through Attack Detection
and Diagnosis
Based on the rules in Section 2.3.1, a novel composite model-free AD strategy for LFC is designed herein.

3.1. Basic Framework of Active Defense-Based Load Frequency Control
As can be seen from (2), by obtaining the estimation d̂ and taking control actions u = f (d̂) promptly, LAA impacts

could be significantly attenuated. As with model-based AD, d̂ is achieved through ADD. Nevertheless, the ADD herein
is rather a data-driven than model-based one (e.g., attack observer using system dynamics) because complex nonlinear
models considered herein are unsuitable for model-based ADD.

The data-driven ADDmeans that it demands a specific period to extract time-domain information of d by collecting
the frequency transients. The execution time of ADD plus the response time of pure feedback control would extend the
total recovery period. Therefore, RL-based MFC is adopted after ADD, in the manner of feedforward compensation.
The procedural form is shown in Algorithm 1.

Algorithm 1 Composite AD-based LFC using RL and ADD
Initialization: Set current time t, lag operator index k1 and lookahead index k2, obtain  =
[

!(t) !(t − 1) ⋯ !(t − k1)
]. Set the lower and upper bound of FD d ∈

(

dl, du
).

Step 1. Establish the discrete set  = {d} by using the sampling method, with each element di representing a
specific LAA scenario.
Step 2. For each di, train the RL agent to obtain the corresponding �∗i
Step 3. Predict false power injection d at the next time point t + k2 using the regression model d̂t+k2 =
Regress(,).
Step 4. Search for the nearest (to d(t + k2)) element do from , obtain the trained policy �∗o .
Step 5. Calculate the control error ye and feedback law uf = k(ye).
Step 6. Calculate the control input as u = uf + �∗o .

Algorithm 1 is generally categorized into three parts:
• Part I: RL-based AD This is the core of the optimal AD strategy obtained from Step 1 to 2 for different attack

scenarios.
• Part II: d prediction & optimal strategy The predictive information of LAAs (in Step 3) offered can be used

to find the suitable pre-trained strategy (from Part I) through scenario matching (in Step 4) in advance, thus
synthesizing the real-time control.

• Part III: feedback control-based compensation The feedback control (in Step 5) compensates for the errors
due to the matching and prediction uncertainties (in Part II).

3.2. Part I: Reinforcement Learning-Based Active Defense
From Step 1 and 2 in Algorithm 1, it is learned that RL-based AD predetermines optimal AD strategies for a variety

of LAAs characterized by different d. Then the suitable candidate among the strategy pool can be used after scenario
matching.
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Figure 4: Sample generation based on the probability distribution of the LAA signal

3.2.1. Sample Generation
Step 1 in Algorithm 1 aims to generate different LAA signal samples for training. Two sampling methods can be

used for sample generation: 1) uniform sampling and 2) random sampling. The latter (e.g., Latin hyperbole sampling)
is distribution information-dependent. Supposing thatM samples are required, these two methods can be generalized
as the schematic in Fig. 4. Random sampling can reduce unnecessary samples that fall in the low probability density
areas (e.g., the tail) supposing that the distribution of d is known, giving more samples which the attacker would choose
with high likelihood. Hence the ‘minimal distance’ between the predicted d̂ is much smaller in random sampling than
that in uniform sampling. For example, the distance between d2 and d̂ is much smaller than the distance between d1and d̂ in Fig. 4, which is desired to enhance the robustness of the AD strategy.
3.2.2. Off-Policy Active Defense Strategy

Off-policy RL is adopted due to the following reasons:
• On-policy RL is more conservative in that it follows the same policy derived from state-action values, and it

ignores the other possible ‘better’ policies, which is avoided in off-policy RL by the maximization operator.
• The core of RL-based AD is to use off-line trained strategies for online execution, which is following the off-

policy mode.
Instead of using primitive Q learning [42], actor-critic (AC) is used to handle the continuous space problem. For a
specific di from the set  = {d} obtained by sample generation, the procedural form of AC-based AD strategy is
shown in Algorithm 2.
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Algorithm 2 AC-based AD strategy
Initialization: Set CriticQ(a, s;w) and Actor �(a|s; �). Set the sampling time Ts. Set the learning coefficient � and
�. Set the COI frequency !COI the state s of the simulation environment, which is characterized by a differential-
algebraic equation-based dynamic model [24]. Set reference power of the governor the action a of the simulation
environment.
Step 1. While Not Converged do

Step 2. Observe current state st and obtain the action based on the Actor at ∼ �
(

.|st; �t
); perform this at on thegovernor and observe the new st+1 after Ts, and compute the reward:

rt = −100 ||Δ!COI || − 25
|

|

|

|

)!COI
)t

|

|

|

|

,

Step 3. Obtain at+1 ∼ �
(

.|st+1; �t
). Evaluate the Critic Qt = Q

(

st, at;wt
) and Qt+1 = Q

(

st+1, at+1;wt
).

Compute the TD error:
�t = Qt −

(

rt + Qt+1
)

Step 4. Compute the gradient and update the Critic:

wt+1 = wt − ��t
)Q

(

st, at;w
)

)w
|w=wt

Step 5. Compute the gradient and update the Actor:

�t+1 = �t + ��t
) log

(

at|st, �
)

)�
|�=�t

end while
Step 6. Execute at ∼ �

(

.|st; �t
) with the well-trained Actor.

3.3. Part II: d Estimation & Optimal Strategy
To obtain d̂ in Fig. 4, the estimation or prediction via regression must be performed. Sufficient reaction time

should be preserved to match d̂ with the samples in Fig. 4 before executing the suitable off-line policies.
Since LFC essentially solves the small-signal stability problem, for the convenience of analysis, the system under

LAA is expressed by the small-signal model (Z-domain transfer function):

D (Z) =
amzm + am−1zm−1 +⋯ + a0
bnzn + am−1zn−1 +⋯ + b0

W (Z) (4)

where D(Z) represents d in Z-domain, W (Z) represents the COI frequency of the system in Z-domain. (4) can be
rewritten as:

D (Z) = gm−nzm−n+gm−n−1zm−1−n+⋯+gnz−n

1+c1z−1+⋯+cnz−n
W (Z)

D (Z) +⋯ + cnD (Z) z−n = gm−nW (Z) zm−n +⋯ + gnW (Z) z−n
d (k) +⋯ + cnd (k − n) = gm−n! (k + m − n) + +⋯ + gn! (k − n)
d (k) = f1 (d (k − 1) ,⋯ , d (k − n)) + f2 (! (k + m − n) ,⋯ , ! (k − n))

(5)

As can be seen, d(k) is a weighted sum of d and ! at different discrete instants. It means that d and ! in the past
several discrete instants can be used to predict the future d by estimating f1 and f2 (which can be nonlinear functionsin the context of the large-signal model). This prediction problem belongs to the regression, which can be solved by
classic regression and advanced deep learning methods [43].

The brief procedural form of the regression is summarized in Algorithm 3.
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Figure 5: Load altering attacks on Kundur's 4-unit-13-bus system

Algorithm 3 regression-based d estimation
Initialization: Set total simulation time T ; set the sampling index k; set the training/test ratio N1∕N2; set the time
step Ts; set the sampling Ta; set the maximal number of instances nmax.
Step 1. for t ≤ T do:

Simulate the model with step size Ts by randomly choosing d0 between the predetermined (dmin, dmax); store !0and d0 at every discrete time instant.
end for
Step 2. for i = 1 ∶ lengtℎ(t)

if mod(i − 1, ceil(Ta∕Ts)) == 0
!(k) = !0(i); d(k) = d0(i),

end for
Step 3. While j < nmax do:

set the jtℎ instance �i =
[

xi, yi
] with xi the input and yi the output.

end for
Step 4. Disorder {�i} randomly; obtain the training dataΦtr and test dataΦte based on the training/test ratioN1∕N2.
Step 5. Train the regression-based predictor P (x, �) by using Φtr. Test P (x, �) by using Φte.
Step 6. Simulate a new LAA signal d and estimate it using the trained P (x, �).

Step 2 in Algorithm 3 is used to reduce the volume of the training data. With the aid of Algorithm 3, d̂ at the future
t + k2 can be obtained. The optimal policy �∗o for the nearest sample do = mindi

|

|

|

d̂ − di
|

|

|

is thus executed at t + k2.

3.4. Part III: Feedback Control-Based Compensation
There could exist errors between the real d and predicted d̂. Therefore, corrective action (feedback control) could

be performed to counteract the estimation errors.
The control law u1 = k(d̂) obtained in Section 3.3 is dependent upon d̂, which might be slightly different from

the real d. Without increasing the complexity and cost, a feedback correction term u2 = kf (! − !0) is used for error
reduction. The diagram of the composite controller considering feedback control is shown in Fig. 5. It should be
mentioned that this feedback correction module can also be removed for the simplicity of implementation. The pure
feedforward compensation-based AC agent can still guarantee the frequency quality.
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4. Model-Free Passive Defense-Based Load Frequency Control Through Deep
Reinforcement Learning
The AD strategy in Section 3 relies on d in the online operation. Based on Section 2.3.2, its PD counterpart that

requires no knowledge of d is designed herein.
4.1. Basics of Passive Defense-Based Load Frequency Control

Inspired by passive FTC [40], a PD-based LFC scheme is proposed. All potential attack scenarios are considered at
the design stage. The ADD in AD strategies is not required, relieving the burden of repeated controller reconfiguration.
Compared with AD strategies in Section 3, it appeals to scenarios where the minimal human intervention is expected
during the operation.

The PD-based LFC still uses RL; nevertheless, unlike AC-based Algorithm 3, PD strategies consider various LAAs
simultaneously, possessing generalization ability for unknown scenarios by using deep reinforcement learning (DRL).
The schematic diagram in Fig. 6 shows that it uses replay memory to store data batches deriving from multiple transi-
tions during different episodes under different LAAs (indicated by dashed lines with different colors in Fig. 6). Then
batch learning is performed using certain loss functions to update DQN hyperparameters, which produce the ‘optimal’
strategy for an unknown LAA scenario.
4.2. Deep Reinforcement Learning-based Optimal Control

The observation state used for reward computation is COI frequency deviation !COI . The procedural form of Fig.
6 is summarized in Algorithm 4. Con in Step 3 represents the stop criterion. If the COI frequency exceeds specific
boundary values, it would be heavily punished in the reward with a large negative coefficient of −4000. The benefit
of this setting is to avoid dumb exploration around the exorbitant action values. TheMean operator is used to smooth
the action and the system dynamic responses. As can be seen, Algorithm 4 abandons the predictor design (Algorithm
3) and scenario matching in Algorithm 1, and it is purely off-line trained without any manual intervention. And it can
still handle different LAA scenarios due to the generalization ability using DQN. It can be regarded as the advanced
version of Algorithm 2, which does not adopt DQN and thus cannot handle multi-scenario by a single AC network.

From Sections 3.1 and 4.2, it can be seen that neither the AC-based AD strategy nor the DQN-based PD strategy
violates the principles concerning the real timeliness of LFC. In the AC-based AD strategy, each pair of actor and critic
networks is tuned offline for a specific attack scenario characterized by an LAA signal. The regression network, which
maps the COI frequency and the LAA signal, is also offline trained. During the online operation, for an unknown LAA,
its value is first estimated by the regression network. Then its nearest neighbor is obtained from the offline-trained AC
networks and used to generate the control command. The time of these processes can be ignored when compared
with the control cycle, having no influence on the real timeliness of LFC. Similarly, in the DQN-based PD strategy,
hyperparameters of DQN are tuned offline to generate ‘optimal’ output for various attack scenarios. During the online
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Algorithm 4 Deep Q network-based passive defense strategy
Initialization: Initialize replay memory D; initialize Q with random weights �; initialize Q̂ with random weights �̂.
Set the maximal episode numberM , set the maximal sampling time T of each episode.
Step 1. For episode= 1,M do

Step 2. Initialize sequence �1 For t = 1, T do
Step 3. Choose at with "− greedy algorithm. Execute at on the governor, obtain the next sequence st+1 andcompute the reward rt:

rt = −40
√

|

|

!COI || − 20||!COI ||
2 − 4000Con

Step 4. Store the transition (�t, at, rt, �t
) in D, sample random minibatch of transitions from D, and set:

yj = rj + maxa′
Q̂
(

�j+1, a
′; �̂

)

Step 5. Obtain the gradient of (yj −Q
(

�j , a; �
))2 and update Q̂ .

end for
end for
Step 6. For a specific online LAA scenario Execute at =Mean

(

argmaxaQ̂ (s, a; �)
)
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Figure 7: Load altering attacks on the Kundur's 4-unit-13-bus system

operation, DQN uses the frequency information to take less time in computing the compensation. Thus, it does not
affect the real timeliness of LFC.

5. Case Studies for the Kundur’s 4-Unit-13-bus System
In this section, the Kundur’s 4-unit-13-bus system is used to validate the proposed strategies. For the convenience of

analysis, the system is not divided into multiple interconnected subsystems. LFC in this case adopts the flat frequency
control (FFC) mode. The area control error (ACE) is denoted by ACE = �a!COI . Supposing that an LAA occurs
at the load bus 4, the defender uses all four units to counteract LAAs. The schematic of the Kundur’s 4-unit-13-bus
system under LAA is shown in Fig. 7.
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Figure 8: Moving episode rewards of AC-based RL for LAA d = 5.p.u.

5.1. Active Defense-Based Load Frequency Control Strategy
Based on Section 3, the model-free AD-based LFC strategy is simulated herein. Considering the uncertainty of

LAAs, the LAA signal d is treated as a random variable conforming to some specific distributions. Uniform sampling
can be used for larger number of samples. For the convenience of simulations with limited samples, it is supposed that
the random d conforms to the normal distribution with � = 5 and � = 0.5. After obtaining the samples  = {d}
through Latin hypercube sampling, Algorithm 2 is executed for each d in . An exemplary training process for
d = 5.p.u. is shown in Fig. 8. As can be seen, both the episode and average reward eventually converge. Similarly, the
‘optimal’ off-policy can be obtained for all the 200 LAA scenarios represented by specific d values.
5.1.1. Active Defense Scenario Test

Supposing that during one round of LAA d = 5.3p.u. (which is unknown to the defender), we first directly input the
COI frequency under LAA into the regression network to obtain the estimation d̂, then the optimal AD defense strategy
is obtained by matching d̂ with the member in the offline-trained strategy pool. By the aid of the trained network, after
performing the matching and feedback compensation in Step 4 and 5 in Algorithm 1, the system frequency response is
shown as the blue curve in Fig. 9. For comparison, the conventional PI-based feedback control (without considering
the time delay) is also simulated and the dynamic response is shown as the red curve. As can be seen, even without the
time delay, which is prevalent in the remote communication-based LFC, the dynamic COI frequency response under
PI-based control is still inferior to the proposed AD strategy concerning the overshoot and settling time. It proves the
superiority of the proposed AD strategies concerning both the stability and control velocity.

Also, as is known, when the attacker injects a major LAA signal, the abrupt excessive frequency deviation would
occur and conventional feedback control schemes (e.g., PI) cannot be used, which conforms to the standard operating
code in the emergency control. In this case, the proposed AD strategy, which behaves in the manner of the feedforward
compensation by removing the correction module, can still be applicable to deal with major disturbances.

Noisy data might affect the learning performance by increasing irrelevant information and the learning model
complexity. To validate the noise tolerance performance of the AD strategy, the frequency quality under different
signal-to-noise ratios (SNRs) is demonstrated. The LAA signal is still set d = 5.3p.u.. The dynamic responses of
COI frequency deviations under different SNRs in Fig. 10a show that the learning model is still effective at specific
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Figure 9: Dynamic responses of the Kundur's 4-unit-13-bus system in a AD scenario
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Figure 10: Robustness test of the AD strategy for the Kundur's 4-unit-13-bus system

noise levels. Besides the noise tolerance, robustness of the AD strategy under normal load variations is also tested.
Supposing that an LAA occurs simultaneously with the normal load disturbance; and the disturbance conditions are:
1) pd = 0.01p.u. at t = 50s; 2) pd = 0.05p.u. at t = 30s; 3) pd = 0.1p.u. at t = 15s; and 4) pd = 0.15p.u. at t = 10s.The dynamic responses of COI frequency deviations in Fig. 10b show that the AD strategy is generally insensitive to
the normal load variations with small magnitude.
5.2. Passive Defense-Based Load Frequency Control Strategy

Based on Section 4, the PD strategy is simulated herein. The LAA scenario is the same as Fig. 7, and the LAA
signal is randomly selected among (3, 7). The training process represented by the moving episode reward is shown in
Fig. 11. As can be seen, the episode reward is significantly improved with the increase of episode numbers. It should
be mentioned that due to the stochastic learning behavior, the absolute convergence cannot be achieved. Instead, the
reward keeps changing at an acceptable level. After training the agent, the following PD scenario is tested.
5.2.1. Passive Defense Scenario Test

In this scenario, it is assumed that the LAA signal is d = 5.3p.u. (which is unknown to the defender). The ‘optimal’
PD defense strategy is obtained by directly inputting the COI frequency under this LAA into the offline-trained DQN
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Figure 11: Moving episode rewards during the training process of DQN

0 20 40 60 80 100

time/s

-6

-4

-2

0

2

ro
ta

ti
o

n
 s

p
e

e
d

 d
e

v
ia

ti
o

n
/p

.u
.

10-4

no.1

no.2

no.3

no.4

(a) dynamic response of rotor speed deviation of the four
units under the PD strategy

0 20 40 60 80 100

time/s

-0.2

-0.15

-0.1

-0.05

0

0.05

C
O

I 
fr

e
q

u
e

n
c
y
 d

e
v
ia

ti
o

n
/H

z

PD

PI

(b) dynamic response of COI frequency under PD and PI
strategies

Figure 12: Dynamic responses of the Kundur's 4-unit-13-bus system in a PD scenario

agent. By the aid of the trained DQN agent, the system frequency response is shown as the blue curve in Fig. 12. Also,
it can be seen that the dynamic COI frequency response under the proposed PD strategy is significantly improved
compared with PI concerning the overshoot and settling time. The main difference between the AD and PD strategies
lies in the training cost of the RL agent. Since no deep neural network is required for AD, the training cost is low;
nevertheless, more samples should be generated to enhance the robustness, and the overall cost might vary depending
on the sample numbers. As for the PD strategies, the training cost concerning DQN would significantly increase with
hyperparameters. Though the defender has no knowledge of d during the online operation process, no online estimation
is required.
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Figure 13: Robustness test of the PD strategy for the Kundur's 4-unit-13-bus system

Robustness tests are also performed for the PD strategy in face of the noisy data and normal operating scenarios
(normal load variations). The four normal operating conditions are the same as Fig. 10b. From Fig. 13a and 13b, it is
learned that the passive strategy can also tolerate certain noise levels and normal load disturbances.

6. Case Studies for the IEEE 16-Unit-68-bus System
In this section, the proposed AD and PD strategies are simulated for the IEEE 16-unit-68-bus system. The system

is treated as an ‘aggregated’ one for the convenience of analysis. The FFC mode is adopted herein and the ACE is
denoted by ACE = �a!COI . And an LAA is supposed to occur at the load bus 52, 55, 56, and 67, the schematic is
shown in Fig. 14. Also, it is assumed that only 4 (No. 13, 14, 15, 16) of the 16 units participate in the active defense.
These four units have much larger capacity, and they can offer sufficient power support to attenuate the influence of
LAAs. Also, if all of the 16 units participate in the regulation, the coordination among units with different dynamic
characteristics and parameters might be considered to balance different performance indicators, which complicates the
AD or PD strategy and is unnecessary.
6.1. Active Defense-Based Load Frequency Control Strategy

Based on Section 3, the AD strategy is simulated herein. As for the sample generation in Section 3.2.1, it is
supposed that the LAA signal conforms to the normal distribution with � = 7 and � = 0.5. After obtaining the
samples = {d} through Latin hypercube sampling, Algorithm 2 is executed for each d in. An exemplary training
process for d = 5.p.u. is shown in Fig. 15. As can be seen, both the episode and average reward finally converge to an
acceptable value after probably 200 episodes of training. Similarly, the ‘optimal’ off-policy can be obtained for all the
200 LAA samples. As with Section 5.1, the regression network can be trained. After obtaining the optimal strategy
pool and the trained network, the following AD scenario is tested.
6.1.1. Active Defense Scenario Test

Supposing that during one round of LAA d = 5p.u. (which is unknown to the defender). By the aid of the trained
network, after performing the matching and feedback compensation in Step 4 and 5 in Algorithm 1, the system fre-
quency response is shown as the blue curve in Fig. 16. For comparison, the conventional PI-based feedback control is
also simulated and dynamic response is shown as the red curve. As with Fig. 9, the dynamic COI frequency response
under the proposed AD strategy is significantly improved compared with PI. It proves that the proposed feedforward
compensation-based AD strategy can perform better than the conventional feedback ones no matter how large the
system is.

To validate the noise tolerance performance of the AD strategy, the frequency control performance under different
signal-to-noise ratios (SNRs) is demonstrated for the AD strategy. The dynamic responses of COI frequency deviations
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Figure 14: Load altering attacks on the IEEE 16-unit-68-bus system

under different SNRs in Fig. 17a show that the learning model is still effective at specific noise levels. Supposing that
the normal load disturbance occurs at bus 60, and the four conditions are: 1) pd = 0.01p.u. at t = 50s; 2) pd = 0.05p.u.at t = 30s; 3) pd = 0.1p.u. at t = 15s; and 4) pd = 0.15p.u. at t = 10s. The dynamic responses of COI frequency
deviations in Fig. 17b show that the AD strategy is generally insensitive to the normal load variations with small
magnitude.
6.2. Passive Defense-Based Load Frequency Control Strategy

Based on Section 4, the model-free PD-based LFC strategy is simulated herein. The LAA scenario is the same as
Fig. 7, and the LAA signal is randomly selected among (3, 7). The training process represented by the episode reward
is shown in Fig. 18. After training the agent, the following PD scenario is tested.
6.2.1. Passive Defense Scenario Test

In this scenario, it is assumed that the LAA signal is d = 5.9p.u. (which is unknown to the defender). By the aid
of the trained DQN agent, the system frequency response is shown as the blue curve in Fig. 19. Also, it can be seen
that the dynamic COI frequency response under the proposed PD strategy is significantly improved compared with PI
concerning the overshoot and settling time.

Robustness tests are also performed for the PD strategy in face of the noisy data and normal operating scenarios
(normal load variations). The four load variation conditions are the same as Fig. 17b. From Fig. 20a and 20b, it is
learned that the passive strategy can tolerate certain noise levels and normal load disturbances.

7. Conclusions
In this paper, model-free defense strategies for secondary frequency control are determined with the aid of rein-

forcement learning and deep neural network techniques. As can be seen from the simulation results, the proposed
model-free AD and PD strategies can both handle LAAs with acceptable frequency control performances. In AD the
defender would learn from a specific LAA scenario and actively optimize its defense policy for this scenario. In PD the
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Figure 15: Moving episode rewards of AC-based RL for LAA d = 5.p.u.
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Figure 16: Dynamic responses of the IEEE 16-unit-68-bus system in a AD scenario

defender instead passively tolerates all potential LAA scenarios by enhancing the system redundancies. Both methods
are applicable and the ultimate decision depends on whether the defender prioritizes the strong or weak initiative. To
conclude, this paper presents a framework of model-free AD and PD strategies for electrical power system control
under cyber attack. In future work, more types of cyber attacks will be studied under this proposed framework.
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